All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flood Simulations Using a Sensor Network and Support Vector Machine Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10470082" target="_blank" >RIV/00216208:11310/23:10470082 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AJjJa0eZ-P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AJjJa0eZ-P</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/w15112004" target="_blank" >10.3390/w15112004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flood Simulations Using a Sensor Network and Support Vector Machine Model

  • Original language description

    This study aims to couple the support vector machine (SVM) model with a hydrometeorological wireless sensor network to simulate different types of flood events in a montane basin. The model was tested in the mid-latitude montane basin of Vydra in the Sumava Mountains, Central Europe, featuring complex physiography, high dynamics of hydrometeorological processes, and the occurrence of different types of floods. The basin is equipped with a sensor network operating in headwaters along with the conventional long-term monitoring in the outlet. The model was trained and validated using hydrological observations from 2011 to 2021, and performance was assessed using metrics such as R(2), NSE, KGE, and RMSE. The model was run using both hourly and daily timesteps to evaluate the effect of timestep aggregation. Model setup and deployment utilized the KNIME software platform, LibSVM library, and Python packages. Sensitivity analysis was performed to determine the optimal configuration of the SVR model parameters (C, N, and E). Among 125 simulation variants, an optimal parameter configuration was identified that resulted in improved model performance and better fit for peak flows. The sensitivity analysis demonstrated the robustness of the SVR model, as different parameter variations yielded reasonable performances, with NSE values ranging from 0.791 to 0.873 for a complex hydrological year. Simulation results for different flood scenarios showed the reliability of the model in reconstructing different types of floods. The model accurately captured trend fitting, event timing, peaks, and flood volumes without significant errors. Performance was generally higher using a daily timestep, with mean metric values R(2) = 0.963 and NSE = 0.880, compared to mean R(2) = 0.913 and NSE = 0.820 using an hourly timestep, for all 12 flood scenarios. The very good performance even for complex flood events such as rain-on-snow floods combined with the fast computation makes this a promising approach for applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Water

  • ISSN

    2073-4441

  • e-ISSN

    2073-4441

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    27

  • Pages from-to

    2004

  • UT code for WoS article

    001005406700001

  • EID of the result in the Scopus database

    2-s2.0-85161321334