Delineating vulnerability to drought using a process-based growth model in Pyrenean silver fir forests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10470245" target="_blank" >RIV/00216208:11310/23:10470245 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WnPl7XdDh2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WnPl7XdDh2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.foreco.2023.121069" target="_blank" >10.1016/j.foreco.2023.121069</a>
Alternative languages
Result language
angličtina
Original language name
Delineating vulnerability to drought using a process-based growth model in Pyrenean silver fir forests
Original language description
Assessing tree growth patterns and deviations from expected climate baselines across wide environmental gradients is fundamental to determine forest vulnerability to drought. This need is particularly compelling for the southernmost limit of the tree species distribution where hot droughts often trigger forest dieback processes. This is the case of some silver fir (Abies alba) populations located in southwestern Europe (Spanish Pyrenees) which present ongoing dieback processes since the 1980s. We sampled 21 silver fir stands showing different dieback intensity, assessed using defoliation levels, quantified their growth patterns and characterized their responses to climate. Then, we assessed growth deviations from climatic predictions using the process-based VaganovShashkin (VS) growth model. The forests showing most intense dieback, i.e. highest defoliation levels, were mainly located in low-elevation sites of the western Pyrenees. Trees in these stands displayed the lowest growth rates and the highest year-to-year variability in growth and their growth was limited by late-summer evaporative demand. In eastern and central Pyrenees, we detected a mild growth limitation by low soil moisture during the late growing season and positive growth recovery in recent years with respect to a climate baseline. Decreasing growth trajectories were the most common pattern, while rising trends were common in stands with low dieback in eastern and central Pyrenees. Our results portend systematic spatial variability of growth trends across the Pyrenean silver fir populations forming the south-western distribution limit of the species in Europe. Decoupling of growth between eastern and western populations observed in the recent decades suggests contrasting vulnerability to climate change, and more importantly, the decoupling of growth patterns in western clusters could be used as an early-warning signal of impending dieback. Consequently, we foresee future dieback events to have more detrimental effects in the western compared with the eastern Pyrenees.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forest Ecology and Management
ISSN
0378-1127
e-ISSN
1872-7042
Volume of the periodical
541
Issue of the periodical within the volume
February
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
121069
UT code for WoS article
001001502200001
EID of the result in the Scopus database
2-s2.0-85158914947