All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10472734" target="_blank" >RIV/00216208:11310/23:10472734 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8N1m3Gn94u" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8N1m3Gn94u</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/gcb.16692" target="_blank" >10.1111/gcb.16692</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities

  • Original language description

    Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Global Change Biology

  • ISSN

    1354-1013

  • e-ISSN

    1365-2486

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    3054-3071

  • UT code for WoS article

    000963888200001

  • EID of the result in the Scopus database

    2-s2.0-85151961189