All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Role of phenotypic and transcriptomic plasticity in alpine adaptation of Arabidopsis arenosa

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10477275" target="_blank" >RIV/00216208:11310/23:10477275 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vCpk5lgvdt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vCpk5lgvdt</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/mec.17144" target="_blank" >10.1111/mec.17144</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Role of phenotypic and transcriptomic plasticity in alpine adaptation of Arabidopsis arenosa

  • Original language description

    Plasticity is an important component of the response of organism to environmental changes, but whether plasticity facilitates adaptation is still largely debated. Using transcriptomic and phenotypic data, we explored the evolution of ancestral plasticity during alpine colonization in Arabidopsis arenosa. We leveraged naturally replicated adaptation in four distinct mountain regions in Central Europe. We sampled seeds from ancestral foothill and independently formed alpine populations in each region and raised them in growth chambers under conditions approximating their natural environments. We gathered RNA-seq and genetic data of 48 and 63 plants and scored vegetative and flowering traits in 203 and 272 plants respectively. Then, we compared gene expression and trait values over two treatments differing in temperature and irradiance and elevations of origin and quantified the extent of ancestral and derived plasticity. At the transcriptomic level, initial plastic changes tended to be more reinforced than reversed in adapted alpine populations. Genes showing reinforcement were involved in the stress response, developmental processes and morphogenesis and those undergoing reversion were related to the stress response (light and biotic stress). At the phenotypic level, initial plastic changes in all but one trait were also reinforced supporting a facilitating role of phenotypic plasticity during colonization of an alpine environment. Our results contrasted with previous studies that showed generally higher reversion than reinforcement and supported the idea that ancestral plasticity tends to be reinforced in the context of alpine adaptation. However, plasticity may also be the source of potential maladaptation, especially at the transcriptomic level.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/GA20-22783S" target="_blank" >GA20-22783S: Genome duplication as an imperfect barrier in speciation? Evolutionary drivers and consequences of inter-ploidy introgression in natural populations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Molecular Ecology

  • ISSN

    0962-1083

  • e-ISSN

    1365-294X

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    21

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    5771-5784

  • UT code for WoS article

    001069841800001

  • EID of the result in the Scopus database

    2-s2.0-85171590432