Mapping changes of grassland to arable land using automatic machine learning of stacked ensembles and H2O library
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10477520" target="_blank" >RIV/00216208:11310/24:10477520 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Hr8sDtPvSg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Hr8sDtPvSg</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/22797254.2023.2294127" target="_blank" >10.1080/22797254.2023.2294127</a>
Alternative languages
Result language
angličtina
Original language name
Mapping changes of grassland to arable land using automatic machine learning of stacked ensembles and H2O library
Original language description
Permanent grasslands play a very important role in the landscape. The loss of permanent grasslands and their subsequent conversion into arable land create erosion-prone agricultural areas in the landscape and have a negative impact on the biodiversity. From this point of view, there is a need for the accurate and effective monitoring of changes in the agricultural landscape along with an assessment of the influence of the agricultural policies on the landscape. Sentinel-2 from the Copernicus programme has improved options for the implementation of remote sensing data into the monitoring of agricultural land. The aim of this study was to evaluate the potential of H2O library and within implemented Automachine learning function (AutoML) and its stacked ensembles for mapping changes from grasslands to arable lands. All results show high overall accuracy from 93.5% to 96.6% and high values of area under the ROC curve (0.94-0.98). Stacked ensembles appear to be the most accurate machine learning models for mapping changes from grasslands to arable lands. The importance of several biological predictors has been tested (FAPAR, FCOVER, LAI, NDVI, etc.) with the help of a heatmap that is part of AutoML function of H2O library.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Europen Journal of Remote Sensing
ISSN
2279-7254
e-ISSN
2279-7254
Volume of the periodical
57
Issue of the periodical within the volume
1
Country of publishing house
IT - ITALY
Number of pages
18
Pages from-to
2294127
UT code for WoS article
001129019100001
EID of the result in the Scopus database
2-s2.0-85180699149