Neural networks implementation for the environmental optimisation of the recycled concrete aggregate inclusion in warm mix asphalt
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10480823" target="_blank" >RIV/00216208:11310/24:10480823 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IQQVmJhDJG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IQQVmJhDJG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/14680629.2023.2230298" target="_blank" >10.1080/14680629.2023.2230298</a>
Alternative languages
Result language
angličtina
Original language name
Neural networks implementation for the environmental optimisation of the recycled concrete aggregate inclusion in warm mix asphalt
Original language description
Regarding the traditional Hot Mix Asphalt (HMA), Warm Mix Asphalt (WMA) with Recycled Concrete Aggregate (RCA) contents (WMA-RCA) requires lower production temperatures and diminishes the consumption of natural aggregates (NAs). Nonetheless, these environmental benefits may be counteracted by the higher optimal asphalt binder demanded by the WMA-RCAs. In this regard, this research develops a computational model to optimize the WMA-RCA design. In order to build a sufficiently accurate and adaptable model, it was decided to employ Artificial Neural Networks (ANNs). The ANN implementation was based on the postulates of the statistical learning theory, i.e., preferring to generate learning through low-complexity models. Also, a representative case study of the northern region of Colombia was assessed. In this scenario, the optimal coarse RCA content was 10%, and the sustainability savings were maintained up to an RCA's hauling distance of 200 km.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Road Materials and Pavement Design
ISSN
1468-0629
e-ISSN
2164-7402
Volume of the periodical
25
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
941-966
UT code for WoS article
001022744200001
EID of the result in the Scopus database
2-s2.0-85164490002