Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10481174" target="_blank" >RIV/00216208:11310/24:10481174 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MsH2-TOM5R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MsH2-TOM5R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/tc-18-1533-2024" target="_blank" >10.5194/tc-18-1533-2024</a>
Alternative languages
Result language
angličtina
Original language name
Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming
Original language description
The shift in climate that occurred between the Last Glacial Maximum (LGM) and the Early Holocene (ca. 18-12 kyr BP) displayed rates of temperature increase similar to present-day warming trends. The most rapid recorded changes in temperature occurred during the abrupt climate oscillations known as the Bolling-Allerod interstadial (14.7-12.9 kyr BP) and the Younger Dryas stadial (12.9-11.7 kyr BP). Reconstructing ice sheet dynamics during these climate oscillations provides the opportunity to assess long-term ice sheet evolution in reaction to a rapidly changing climate. Here, we use glacial geomorphological inversion methods (flowsets) to reconstruct the ice flow dynamics and the marginal retreat pattern of the southwestern sector of the Laurentide Ice Sheet (SWLIS). We combine our reconstruction with a recently compiled regional deglaciation chronology to depict ice flow dynamics that encompass the time period from pre-LGM to the Early Holocene. Our reconstruction portrays three macroscale reorganizations in the orientation and dynamics of ice streaming followed by regional deglaciation associated with rapid warming during the Bolling-Allerod interstadial. Initial westward flow is documented, likely associated with an early set of ice streams that formed during the advance to the LGM. During the LGM ice streaming displays a dominant north to south orientation. Ice sheet thinning at approx. 15 ka is associated with a macroscale reorganization in ice stream flow, with a complex of ice streams recording south-eastward flow. A second macroscale reorganization in ice flow is then observed at approx. 14 ka, in which southwestern ice flow is restricted to the Hay, Peace, Athabasca, and Churchill river lowlands. Rates of ice sheet retreat then slowed considerably during the Younger Dryas stadial; at this time, the ice margin was situated north of the Canadian Shield boundary and ice flow continued to be sourced from the northeast. Resulting from these changes in ice sheet dynamics, we recognize a three-part pattern of deglacial landform zonation within the SWLIS characterized by active ice margin recession, stagnation and downwasting punctuated by local surging (terrestrial ice sheet collapse): the outer deglacial zone contains large recessional moraines aligned with the direction of active ice margin retreat; the intermediate deglacial zone contains large regions of hummocky and stagnation terrain, in some areas crosscut by the signature of local surges, reflecting punctuated stagnation and downwasting; and the inner deglacial zone contains inset recessional moraines demarcating progressive regional ice margin retreat. We attribute these macroscale changes in ice flow geometry and associated deglacial behaviour to external climatic controls during the Bolling-Allerod and Younger Dryas but also recognize the role of internal (glaciological, lithological and topographic) controls in SWLIS dynamics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
<a href="/en/project/GJ19-21216Y" target="_blank" >GJ19-21216Y: New deglaciation chronology of the North American Ice Sheet Complex</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Cryosphere
ISSN
1994-0416
e-ISSN
1994-0424
Volume of the periodical
18
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
1533-1559
UT code for WoS article
001196940600001
EID of the result in the Scopus database
2-s2.0-85190278153