Uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F01%3A00105371" target="_blank" >RIV/00216208:11320/01:00105371 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/01:00004101
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces
Original language description
We prove the uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces defined over triangulations consisting of triangles or quadrilaterals. The result is valid for arbitrary polygonal domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2FP029" target="_blank" >GA201/99/P029: Construction and numerical solution of stabilized discretizations of the Stokes and Navier-Stokes equations</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Functional Analysis and Optimization
ISSN
0163-0563
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
107-126
UT code for WoS article
—
EID of the result in the Scopus database
—