All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F01%3A00105371" target="_blank" >RIV/00216208:11320/01:00105371 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/01:00004101

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces

  • Original language description

    We prove the uniform validity of discrete Friedrichs' inequality for general nonconforming finite element spaces defined over triangulations consisting of triangles or quadrilaterals. The result is valid for arbitrary polygonal domains.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F99%2FP029" target="_blank" >GA201/99/P029: Construction and numerical solution of stabilized discretizations of the Stokes and Navier-Stokes equations</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2001

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerical Functional Analysis and Optimization

  • ISSN

    0163-0563

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    107-126

  • UT code for WoS article

  • EID of the result in the Scopus database