Gateaux differentiability of Lipschitz functions via directional derivatives
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F03%3A00002695" target="_blank" >RIV/00216208:11320/03:00002695 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/03:01096019
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Gateaux differentiability of Lipschitz functions via directional derivatives
Original language description
We investigate the set of points at which a Lipschitz vector function on a separable Banach space has all one-sided directional derivatives but it is not Gateaux differentiable.
Czech name
Gateaux differentiability of Lipschitz functions via directional derivatives
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0767" target="_blank" >GA201/00/0767: Theory of real functions and distributions</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Real Analysis Exchange
ISSN
0147-1937
e-ISSN
—
Volume of the periodical
28 (2002-2
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
34
Pages from-to
287-320
UT code for WoS article
—
EID of the result in the Scopus database
—