All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximating Reversal Distance for Strings with Bounded Number of Duplicates

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00206164" target="_blank" >RIV/00216208:11320/05:00206164 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximating Reversal Distance for Strings with Bounded Number of Duplicates

  • Original language description

    For a string $A=a_1ldots a_n$, a {em reversal} $rho(i,j)$, $1leq i lt leq n$, reverses the order of symbols in the substring $a_ildots a_j$ of $A$. Given two strings, $A$ and $B$, {em sorting by reversals} is the problem of finding the minimum number of reversals that transform the string $A$ into the string $B$. Traditionally, the problem was studied for permutations. We consider a generalization of the problem and allow each symbol to appear at most $k$ times in each string. The main result ofthe paper is a $Theta(k^2)$-approximation algorithm running in time $O(kn)$.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematical Foundations of Computer Science 2005, proceedings

  • ISBN

    3-540-28702-7

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Berlin

  • Event date

    Jan 1, 2005

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000232273200050