Regularity of the inverse of a planar Sobolev homeomorphism
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F06%3A00206024" target="_blank" >RIV/00216208:11320/06:00206024 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Regularity of the inverse of a planar Sobolev homeomorphism
Original language description
Let $Omegasubset{er}^2$ be a domain. If $fin W^{1,1}_{loc}(Omega,er^2)$ is a homeomorphism of finite distortion, we show that $f^{-1}in W^{1,1}_{loc}(f(Omega),er^2)$ and that $f^{-1}$ has finite distortion.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Rational Mechanics and Analysis
ISSN
0003-9527
e-ISSN
—
Volume of the periodical
180, 2006
Issue of the periodical within the volume
180
Country of publishing house
DE - GERMANY
Number of pages
21
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—