Generalised Dualities and Finite Maximal Antichains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F06%3A00206148" target="_blank" >RIV/00216208:11320/06:00206148 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalised Dualities and Finite Maximal Antichains
Original language description
We fully characterise the situations where the existence of a homomorphism from a digraph G to at least one of a finite set H of directed graphs is determined by a finite number of forbidden subgraphs. We prove that these situations, called generalised dualities, are characterised by the non-existence of a homomorphism to G from a finite set of forests. Furthermore, we characterise all finite maximal antichains in the partial order of directed graphs ordered by the existence of homomorphism. We show that these antichains correspond exactly to the generalised dualities. This solves a problem posed in [1]. Finally, we show that it is NP-hard to decide whether a finite set of digraphs forms a maximal antichain.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph-Theoretic Concepts in Computer Science
ISBN
3-540-48381-0
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Berlin
Event date
Jan 1, 2006
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000243130300003