All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds,

Result description

We give an explicit classification of locally homogeneous affine connections with arbitrary torsion in plane domains. For this purpose we use the list of transitive action of groups on plane domains as given by P.J.Olver This generalizes a result by B. Opozda published in Diff. Geom. Appl.

Keywords

Classificationlocallyhomogeneousaffineconnectionsarbitrarytorsion2-dimensionalmanifolds

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds,

  • Original language description

    We give an explicit classification of locally homogeneous affine connections with arbitrary torsion in plane domains. For this purpose we use the list of transitive action of groups on plane domains as given by P.J.Olver This generalizes a result by B. Opozda published in Diff. Geom. Appl.

  • Czech name

    Klasifikace lokálně homogenních afinních konexí s libovolnou torzí na 2-rozměrných varietách

  • Czech description

    Podáváme explicitní klasifikaci lokálně homogenních afinních konexí s libovolnou torzí v rovinných oborech. K tomu účelu používáme tabulku transitivních akcí Lieových grup v rovinných oborech jak je prezentována P.J. Olverem. Tím zobecňujeme výsledek B.Opozdy publikovaný v Diff. Geom. Appl.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monatshefte fur Mathematik

  • ISSN

    0026-9255

  • e-ISSN

  • Volume of the periodical

    153

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    000251971100001

  • EID of the result in the Scopus database