Analysis of the discontinuous Galerkin finite element method applied to a scalar nonlinear convection-diffusion equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A10118821" target="_blank" >RIV/00216208:11320/08:10118821 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Analysis of the discontinuous Galerkin finite element method applied to a scalar nonlinear convection-diffusion equation
Original language description
We deal with a scalar nonstationary convection-diffusion equation with nonlinear convective as well as diffusive terms which represents a model problem for the solution of the system of the compressible Navier-Stokes equations describing a motion of viscous compressible fluids. We present a discretization of this model equation by the discontinuous Galerkin finite element method. Moreover, under some assumptions on the nonlinear terms, domain partitions and the regularity of the exact solution, we introduce a priori error estimates. A sketch of the proof is presented.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 14
ISBN
978-80-85823-55-4
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
97-102
Publisher name
MÚ AV ČR
Place of publication
Praha
Event location
Dolní Maxov
Event date
Jun 1, 2008
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
000290967400012