The enumeration of planar graphs via Wick's theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206249" target="_blank" >RIV/00216208:11320/09:00206249 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The enumeration of planar graphs via Wick's theorem
Original language description
A seminal technique of theoretical physics called Wick's theorem interprets the Gaussian matrix integral of the products of the trace of powers of Hermitian matrices as the number of labelled maps with a given degree sequence, sorted by their Euler characteristics. This leads to the map enumeration results analogous to those obtained by combinatorial methods. In this paper we show that the enumeration of the graphs embeddable on a given 2-dimensional surface (a main research topic of contemporary enumerative combinatories) can also be formulated as the Gaussian matrix integral of an ice-type partition function. Some of the most puzzling conjectures of discrete mathematics are related to the notion of the cycle double cover. We express the number of thegraphs with a fixed directed cycle double cover as the Gaussian matrix integral of an Ihara-Selberg-type function.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
221
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
—
UT code for WoS article
000266374300009
EID of the result in the Scopus database
—