All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The enumeration of planar graphs via Wick's theorem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206249" target="_blank" >RIV/00216208:11320/09:00206249 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The enumeration of planar graphs via Wick's theorem

  • Original language description

    A seminal technique of theoretical physics called Wick's theorem interprets the Gaussian matrix integral of the products of the trace of powers of Hermitian matrices as the number of labelled maps with a given degree sequence, sorted by their Euler characteristics. This leads to the map enumeration results analogous to those obtained by combinatorial methods. In this paper we show that the enumeration of the graphs embeddable on a given 2-dimensional surface (a main research topic of contemporary enumerative combinatories) can also be formulated as the Gaussian matrix integral of an ice-type partition function. Some of the most puzzling conjectures of discrete mathematics are related to the notion of the cycle double cover. We express the number of thegraphs with a fixed directed cycle double cover as the Gaussian matrix integral of an Ihara-Selberg-type function.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    221

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

  • UT code for WoS article

    000266374300009

  • EID of the result in the Scopus database