Algebra of Invariants for the Rarita-Schwinger Operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206761" target="_blank" >RIV/00216208:11320/09:00206761 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Algebra of Invariants for the Rarita-Schwinger Operators
Original language description
Rarita-Schwinger operators (or Higher Spin Dirac operators) are generalizations of the Dirac operator to functions valued in representations S_k with higher spin k. Their algebraic and analytic properties are currently studied in Clifford analysis. As apart of this pursuit, we describe the algebra of invariant End S_k-valued polynomials, i.e. the algebra of invariant constant-coefficient differential operators acting on these representations. The main theorem states that this algebra is generated by the powers of the Rarita-Schwinger and Laplace operators. This algebra is the algebraic part of the Howe dual superalgebra corresponding to the Pin group acting on S_k.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F06%2FP267" target="_blank" >GP201/06/P267: Invariant differential operators and ambient metric construction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Academiae Scientiarium Fennicae - Mathematica
ISSN
1239-629X
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
2
Country of publishing house
FI - FINLAND
Number of pages
13
Pages from-to
—
UT code for WoS article
000269166000021
EID of the result in the Scopus database
—