All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Group isotopes and a holomorphic action

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206764" target="_blank" >RIV/00216208:11320/09:00206764 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Group isotopes and a holomorphic action

  • Original language description

    We consider the isomorphism problem for quasigroups isotopic to a group and show that the isomorphism classes correspond to orbits of an action by the holomorph of the group upon pairs of permutations of the underlying set, with one of them fixing the neutral element. The results are applied to central quasigroups and to quasigroups of order 4. We also characterize equationally those isotopes of a group in which one of the permutations is a group automorphism.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

  • UT code for WoS article

    000268904700003

  • EID of the result in the Scopus database