Identifying and locating-dominating codes in (random) geometric networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206904" target="_blank" >RIV/00216208:11320/09:00206904 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Identifying and locating-dominating codes in (random) geometric networks
Original language description
We model a problem about networks built from wireless devices using identifying and locating-dominating codes in unit disk graphs. It is known that minimizing the size of an identifying code is NP-complete even for bipartite graphs. First, we improve this result by showing that the problem remains NP-complete for bipartite planar unit disk graphs. Then, we address the question of the existence of an identifying code for random unit disk graphs. Another well-studied class of codes is that of locating-dominating codes, which are less demanding than identifying codes. A locating-dominating code always exists, but minimizing its size is still NP-complete in general. We extend this result to our setting by showing that this question remains NP-complete forarbitrary planar unit disk graphs. Finally, we study the minimum size of such a code in random unit disk graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorics Probability and Computing
ISSN
0963-5483
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
28
Pages from-to
—
UT code for WoS article
000271683800005
EID of the result in the Scopus database
—