A versatile fabrication method for cluster superlattices (Art.No.103045)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207134" target="_blank" >RIV/00216208:11320/09:00207134 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A versatile fabrication method for cluster superlattices (Art.No.103045)
Original language description
On the graphene moiré on Ir(111) a variety of highly perfect cluster superlattices can be grown as shown for Ir, Pt, W and Re. Even materials that do not form cluster superlattices upon room temperature deposition may be grown into such by low-temperature deposition or the application of cluster seeding through Ir as shown for Au, AuIr and FeIr. Criteria for the suitability of a material to form a superlattice are given and largely confirmed. It is proven that at least Pt and Ir form epitaxial cluster superlattices. The temperature stability of the cluster superlattices is investigated and understood on the basis of positional fluctuations of the clusters around their sites of minimum potential energy. The binding sites of Ir, Pt, W and Re cluster superlattices are determined and the ability to cover samples macroscopically with a variety of superlattices is demonstrated.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BM - Solid-state physics and magnetism
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
Neuveden
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
—
UT code for WoS article
000271324400006
EID of the result in the Scopus database
—