A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207175" target="_blank" >RIV/00216208:11320/09:00207175 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A step toward the Bermond-Thomassen conjecture about disjoint cycles in digraphs
Original language description
In 1981, Bermond and Thomassen conjectured that every digraph with minimum out-degree at least 2k - 1 contains k disjoint cycles. This conjecture is trivial for k = 1, and was established for k = 2 by Thomassen in 1983. We verify it for the next case, proving that every digraph with minimum out-degree at least five contains three disjoint cycles.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
—
UT code for WoS article
000267744700028
EID of the result in the Scopus database
—