All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mathematical results concerning unsteady flows of chemically reacting incompressible fluids

Result description

We investigate the mathematical properties of unsteady internal flows of chemically reacting incompressible fluids assuming Navier's slip boundary conditions on the impermeable boundary. We establish long-time and large data existence of weak solution.

Keywords

Mathematicalresultsconcerningunsteadyflowschemicallyreactingincompressiblefluids

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mathematical results concerning unsteady flows of chemically reacting incompressible fluids

  • Original language description

    We investigate the mathematical properties of unsteady internal flows of chemically reacting incompressible fluids assuming Navier's slip boundary conditions on the impermeable boundary. We establish long-time and large data existence of weak solution.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Partial Differential Equations and Fluid Mechanics

  • ISBN

    978-0-521-12512-3

  • Number of pages of the result

    28

  • Pages from-to

  • Number of pages of the book

    257

  • Publisher name

    Cambridge University Press

  • Place of publication

    Cambridge

  • UT code for WoS chapter