Latin Bitrades, Dissections of Equilateral Triangles, and Abelian Groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A10049901" target="_blank" >RIV/00216208:11320/09:10049901 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Latin Bitrades, Dissections of Equilateral Triangles, and Abelian Groups
Original language description
Spherical latin bitrades are connected to dissections of equilateral triangles. Obtained results are used to prove that every spherical latin bitrade can be embedded into a finite abelian group.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Designs
ISSN
1063-8539
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
—
UT code for WoS article
000273150400001
EID of the result in the Scopus database
—