Backbone Colorings of Graphs with Bounded Degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10028939" target="_blank" >RIV/00216208:11320/10:10028939 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Backbone Colorings of Graphs with Bounded Degree
Original language description
We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal integer k for which such a coloring exists is called the backbone chromatic number of G. We show that for a graph G of maximum degree delta where the backbone graph is a d-degenerated subgraph of G, the backbone chromaticnumber is at most delta+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most delta+1. We also present examples where these bounds are attained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
158
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
—
UT code for WoS article
000275582100016
EID of the result in the Scopus database
—