Non-representability of finite projective planes by convex sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10030345" target="_blank" >RIV/00216208:11320/10:10030345 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Non-representability of finite projective planes by convex sets
Original language description
We prove that there is no d such that all finite projective planes can be represented by convex sets in R^d, answering a question of Alon, Kalai, Matoušek, and Meshulam. As a corollary, we show that for every d there are 2-collapsible simplicial complexes that are not d-representable, strengthening a result of Matoušek and the author.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
138
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
—
UT code for WoS article
000281441300027
EID of the result in the Scopus database
—