Distance k-sectors exist
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10038287" target="_blank" >RIV/00216208:11320/10:10038287 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Distance k-sectors exist
Original language description
The bisector of two nonempty sets P and Q in a metric space is the set of all points with equal distance to P and to Q. A distance k-sector of P and Q, where k ? 2 is an integer, is a (k-1)-tuple (C1, C2, ..., Ck-1) such that Ci is the bisector of Ci-1 and Ci+1 for every i= 1, 2, ..., k-1, where C0 = P and Ck = Q. This notion, for the case where P and Q are points in Euclidean plane, was introduced by Asano, Matousek, and Tokuyama. They established the existence and uniqueness of the distance trisectorin this special case. We prove the existence of a distance k-sector for all k and for every two disjoint, nonempty, closed sets P and Q in Euclidean spaces of any (finite) dimension, or more generally, in proper geodesic spaces (uniqueness remains open).The core of the proof is a new notion of k-gradation for P and Q, whose existence (even in an arbitrary metric space) is proved using the Knaster-Tarski fixed point theorem, by a method introduced by Reem and Reich for a slightly differe
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2010 annual symposium on Computational geometry
ISBN
978-1-4503-0016-2
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
Association for Computing Machinery
Place of publication
Neuveden
Event location
Snowbird, Utah
Event date
Jun 13, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000281594400027