All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Jacobians of Sobolev homeomorphisms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10050006" target="_blank" >RIV/00216208:11320/10:10050006 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Jacobians of Sobolev homeomorphisms

  • Original language description

    We show that each homeomorphism $f$ in the Sobolev space $W^{1,1}_{loc}(Omega,rn)$ satisfies either $J_fgeq 0$ a.e or $J_fleq 0$ a.e. if $n=2$ or $n=3$. For $n}3$ we prove the same conclusion under stronger assumption that $fin W^{1,s}_{loc}(Omega,rn)$ for some $s}[n/2]$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Theory of real functions and descriptive set theory II</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Calculus of Variations and Partial Differential Equations

  • ISSN

    0944-2669

  • e-ISSN

  • Volume of the periodical

    2010

  • Issue of the periodical within the volume

    38

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000276423500009

  • EID of the result in the Scopus database