Jacobians of Sobolev homeomorphisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10050006" target="_blank" >RIV/00216208:11320/10:10050006 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Jacobians of Sobolev homeomorphisms
Original language description
We show that each homeomorphism $f$ in the Sobolev space $W^{1,1}_{loc}(Omega,rn)$ satisfies either $J_fgeq 0$ a.e or $J_fleq 0$ a.e. if $n=2$ or $n=3$. For $n}3$ we prove the same conclusion under stronger assumption that $fin W^{1,s}_{loc}(Omega,rn)$ for some $s}[n/2]$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0067" target="_blank" >GA201/09/0067: Theory of real functions and descriptive set theory II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
38
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
—
UT code for WoS article
000276423500009
EID of the result in the Scopus database
—