All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Large tilting modules and representation type

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10050434" target="_blank" >RIV/00216208:11320/10:10050434 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Large tilting modules and representation type

  • Original language description

    We study finiteness conditions on large tilting modules over arbitrary rings. We then turn to a hereditary artin algebra R and apply our results to the tilting module L that generates all modules without preprojective direct summands. We show that the behavior of L over its endomorphism ring determines the representation type of R. A similar result holds true for the tilting module W that generates all divisible modules. Finally, we extend to the wild case the results on Baer modules and torsion-free modules proven earlier for tame hereditary algebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F06%2F0510" target="_blank" >GA201/06/0510: Representations of associative rings and lattices</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Manuscripta Mathematica

  • ISSN

    0025-2611

  • e-ISSN

  • Volume of the periodical

    2010

  • Issue of the periodical within the volume

    132

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000278120000011

  • EID of the result in the Scopus database