Abelian groups with a minimal generating set
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10050566" target="_blank" >RIV/00216208:11320/10:10050566 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Abelian groups with a minimal generating set
Original language description
We study the existence of minimal generating sets in abelian groups. We prove that abelian groups with minimal generating sets are closed neither under quotients, nor under subgroups, nor under infinite products. We give necessary and sufficient conditions for existence of a minimal generating set providing that the abelian group is uncountable, torsion, or torsion-free completely decomposable.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0510" target="_blank" >GA201/06/0510: Representations of associative rings and lattices</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quaestiones Mathematicae
ISSN
1607-3606
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
2
Country of publishing house
ZA - SOUTH AFRICA
Number of pages
13
Pages from-to
—
UT code for WoS article
000279634500002
EID of the result in the Scopus database
—