C-2 Hermite interpolation by Minkowski Pythagorean hodograph curves and medial axis transform approximation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10051963" target="_blank" >RIV/00216208:11320/10:10051963 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
C-2 Hermite interpolation by Minkowski Pythagorean hodograph curves and medial axis transform approximation
Original language description
We describe and fully analyze an algorithm for C-2 Hermite interpolation by Pythagorean hodograph curves of degree 9 in Minkowski space R-2,R-1. We show that for any data there exists a four-parameter system of interpolants and we identify the one whichpreserves symmetry and planarity of the input data and which has the optimal approximation degree. The new algorithm is applied to an efficient approximation of segments of the medial axis transform of a planar domain leading to rational parameterizations of the offsets of the domain boundaries with a high order of approximation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0486" target="_blank" >GA201/08/0486: Statistical analysis of functional random variable and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
8
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
—
UT code for WoS article
000283914000006
EID of the result in the Scopus database
—