On Estimating the Asymptotic Variance of Stationary Point Processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10052040" target="_blank" >RIV/00216208:11320/10:10052040 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Estimating the Asymptotic Variance of Stationary Point Processes
Original language description
We investigate a class of kernel estimators of the asymptotic variance of a d-dimensional stationary point process which can be observed in a cubic sampling window. Depending on the rate of decay (polynomially or exponentially) of the total variation ofreduced second order factorial moment measure outside of an expanding ball centered at the origin, we determine optimal bandwidths minimizing the mean squared error of the asymptotic variance. Our theoretical results are illustrated and supported by a simulation study which compares the (relative) mean squared errors of the estimator of asymptotic variance for planar Poisson, Poisson cluster, and hard-core point processes and for various values of the bandwidth.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Methodology and Computing in Applied Probability
ISSN
1387-5841
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
—
UT code for WoS article
000279600300009
EID of the result in the Scopus database
—