Pursuing a fast robber on a graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10057000" target="_blank" >RIV/00216208:11320/10:10057000 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Pursuing a fast robber on a graph
Original language description
The Cops and Robbers game as originally defined independently by Quilliot and by Nowakowski and Winkler in the 1980s has been much studied, but very few results pertain to the algorithmic and complexity aspects of it. In this paper we prove that computing the minimum number of cops that are guaranteed to catch a robber on a given graph is NP-hard and that the parameterized version of the problem is W[2]-hard; the proof extends to the case where the robber moves s time faster than the cops. We show thaton split graphs, the problem is polynomially solvable if s=1 but is NP-hard if s=2. We further prove that on graphs of bounded cliquewidth the problem is polynomially solvable for s?2. Finally, we show that for planar graphs the minimum number of cops isunbounded if the robber is faster than the cops.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
411
Issue of the periodical within the volume
7-9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
—
UT code for WoS article
000274886700020
EID of the result in the Scopus database
—