Learning User Preferences for 2CP-Regression for a Recommender System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10057138" target="_blank" >RIV/00216208:11320/10:10057138 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning User Preferences for 2CP-Regression for a Recommender System
Original language description
In this paper we deal with a task to learn a general user model from user ratings of a small set of objects. This general model is used to recommend top-k objects to the user. We consider several (also some new) alternatives of learning local preferencesand several alternatives of aggregation (with or without 2CP-regression). The main contributions are evaluation of experiments on our prototype tool Pref-Work with respect to several satisfaction measures and the proposal of method Peak for normalisation of numerical attributes. Our main objective is to keep the number of sample data which the user has to rate reasonable small.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
5901
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
—
UT code for WoS article
000280086900029
EID of the result in the Scopus database
—