Path Homomorphisms, Graph Colorings, and Boolean Matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10081055" target="_blank" >RIV/00216208:11320/10:10081055 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Path Homomorphisms, Graph Colorings, and Boolean Matrices
Original language description
We investigate bounds on the chromatic number of a grape G derived from the nonexistence of homomorphisms from some path (P) over right arrow into some orientation (G) over right arrow of G. The condition is often efficiently verifiable using boolean matrix multiplications. However, the bound associated to a path (P) over right arrow depends on the relation between the "algebraic length" and "derived algebraic length" of (P) over right arrow. This suggests that paths yielding efficient bounds may be exponentially large with respect to G, and the corresponding heuristic may not be constructive.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
63
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
—
UT code for WoS article
000275030500004
EID of the result in the Scopus database
—