All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Nonmetric Similarity Search Problems in Complex Domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10045849" target="_blank" >RIV/00216208:11320/11:10045849 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/1978802.1978813" target="_blank" >http://dx.doi.org/10.1145/1978802.1978813</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/1978802.1978813" target="_blank" >10.1145/1978802.1978813</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Nonmetric Similarity Search Problems in Complex Domains

  • Original language description

    The task of similarity search is widely used in various areas of computing, including multimedia databases, data mining, bioinformatics, social networks, etc. In fact, retrieval of semantically unstructured data entities requires a form of aggregated qualification that selects entities relevant to a query. A popular type of such a mechanism is similarity querying. For a long time, the database-oriented applications of similarity search employed the definition of similarity restricted to metric distances. Due to its topological properties, metric similarity can be effectively used to index a database which can be then queried efficiently by so-called metric access methods. However, together with the increasing complexity of data entities across variousdomains, in recent years there appeared many similarities that were not metrics -- we call them nonmetric similarity functions. In this paper we survey domains employing nonmetric functions for effective similarity search, and methods for

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F11%2F0968" target="_blank" >GAP202/11/0968: Large-scale Nonmetric Similarity Search in Complex Domains</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACM Computing Surveys

  • ISSN

    0360-0300

  • e-ISSN

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    50

  • Pages from-to

    1-50

  • UT code for WoS article

  • EID of the result in the Scopus database