Efficient connectivity testing of hypercubic networks with faults
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10099483" target="_blank" >RIV/00216208:11320/11:10099483 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-19222-7_19" target="_blank" >http://dx.doi.org/10.1007/978-3-642-19222-7_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-19222-7_19" target="_blank" >10.1007/978-3-642-19222-7_19</a>
Alternative languages
Result language
angličtina
Original language name
Efficient connectivity testing of hypercubic networks with faults
Original language description
Given a connected graph G and a set F of faulty vertices of G, let G MINUS SIGN F be the graph obtained from G by deletion of all vertices of F and edges incident with them. Is there an algorithm, whose running time may be bounded by a polynomial function of |F| and log |V(G)|, which decides whether G MINUS SIGN F is still connected? Even though the answer to this question is negative in general, we describe an algorithm which resolves this problem for the n-dimensional hypercube in time O(|F|n^3). Furthermore, we sketch a more general algorithm that is efficient for graph classes with good vertex expansion properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
6460
Issue of the periodical within the volume
6460
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
181-191
UT code for WoS article
000290418700019
EID of the result in the Scopus database
—