Estimating Stochastic Cusp Model Using Transition Density
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10099508" target="_blank" >RIV/00216208:11320/11:10099508 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Estimating Stochastic Cusp Model Using Transition Density
Original language description
Paper focuses on an econometric model known as the cusp within standard catastrophe theory. This model allows discontinuous change in a dependent variable for a small continuous change in parameters. This model is given by stochastic di erential equationwith cubic drift. The closed-form solution of density for this process is known only in the stationary case and this density belongs to the class of generalized exponential distributions, which allows for skewness, di erent tail shapes and multiple equilibria. The transition density is approximated by the finite difference method and parameters are estimated using the maximum likelihood principle. An empirical example deals with the crash known as Black Monday, where parameters of the drift are drivenby market fundamentals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Czech Econometric Society
ISSN
1212-074X
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
28
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
12
Pages from-to
84-95
UT code for WoS article
—
EID of the result in the Scopus database
—