All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On average and highest number of flips in pancake sorting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10100845" target="_blank" >RIV/00216208:11320/11:10100845 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.tcs.2010.11.028" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2010.11.028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2010.11.028" target="_blank" >10.1016/j.tcs.2010.11.028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On average and highest number of flips in pancake sorting

  • Original language description

    We are given a stack of pancakes of different sizes and the only allowed operation is to take several pancakes from the top and flip them. The unburnt version requires the pancakes to be sorted by their sizes at the end, while in the burnt version they additionally need to be oriented burnt-side down. We study the largest value of the number of flips needed to sort a stack of n pancakes, both in the unburnt version (f(n)) and in the burnt version (g(n)). We present exact values of f(n) up to n=19 and ofg(n) up to n=17 and disprove a conjecture of Cohen and Blum by showing that the burnt stack -I(15) is not the hardest to sort for n = 15. We also show that sorting a random stack of n unburnt pancakes can be done with at most 17n/12 + O(1) flips on average. The average number of flips of the optimal algorithm for sorting stacks of n burnt pancakes is shown to be between n + Omega(n/log n) and 7n/4 + O(1). We slightly increase the lower bound on g(n) to (3n + 3)/2.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GD201%2F09%2FH057" target="_blank" >GD201/09/H057: Res Informatica</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Volume of the periodical

    412

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    822-834

  • UT code for WoS article

    000287295000018

  • EID of the result in the Scopus database