All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10100949" target="_blank" >RIV/00216208:11320/11:10100949 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions

  • Original language description

    We consider steady compressible Navier--Stokes--Fourier system in a bounded twodimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law $p(vr,vt) sim vr^gamma + vr vt$ if $gamma >1$ and $p(vr,vt) sim vr ln^alpha(1+vr) + vr vt$ if $gamma =1$, $alpha>0$, depending on the model for the heat flux.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    24

  • Pages from-to

    137-160

  • UT code for WoS article

  • EID of the result in the Scopus database