New approach to Petersen coloring
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10101030" target="_blank" >RIV/00216208:11320/11:10101030 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.endm.2011.10.026" target="_blank" >http://dx.doi.org/10.1016/j.endm.2011.10.026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2011.10.026" target="_blank" >10.1016/j.endm.2011.10.026</a>
Alternative languages
Result language
angličtina
Original language name
New approach to Petersen coloring
Original language description
Petersen coloring (defined by Jaeger [On graphic-minimal spaces, Ann. Discrete Math. 8 (1980)]) is a mapping from the edges of a cubic graph to the edges of the Petersen graph, so that three edges adjacent at a vertex are mapped to three edges adjacent at a vertex. The existence of such mapping for every cubic bridgeless graph is known to imply the truth of the Cycle double cover conjecture and of the Berge-Fulkerson conjecture. We develop Jaeger?s alternate formulation of Petersen coloring in terms ofspecial five-edge colorings. We suggest a weaker conjecture, and provide new techniques to solve it. On a related note, we provide a counterexample to a stronger conjecture by DeVos, Nešetřil, and Raspaud [On edge-maps whose inverse preserves flows and tensions, Graph Theory in Paris, 2006] that asked for an oriented version of Petersen coloring. Keywords: Petersen coloring; nowhere-zero flows; cycle-double cover
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
—
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
755-760
UT code for WoS article
000294972800004
EID of the result in the Scopus database
—