Topological Compactifications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10103603" target="_blank" >RIV/00216208:11320/11:10103603 - isvavai.cz</a>
Result on the web
<a href="http://journals.impan.gov.pl/cgi-bin/fm/pdf?fm213-3-04" target="_blank" >http://journals.impan.gov.pl/cgi-bin/fm/pdf?fm213-3-04</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm213-3-4" target="_blank" >10.4064/fm213-3-4</a>
Alternative languages
Result language
angličtina
Original language name
Topological Compactifications
Original language description
We study those compactifications of a space such that every autohomeomorphism of the given space can be continuously extended over the compactification. These are called H-compactifications. Van Douwen proved that there are exactly three H-compactifications of the real line. We prove that there exist only two H-compactifications of Euclidean spaces of higher dimension. Next we show that there are 26 H-compactifications of countable sum of real lines and 11 H-compactifications of countable sum of Euclidean spaces of higher dimension. All H-compactifications of discrete and countable locally compact spaces are described.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
—
Volume of the periodical
213
Issue of the periodical within the volume
3
Country of publishing house
PL - POLAND
Number of pages
21
Pages from-to
233-253
UT code for WoS article
000296298400004
EID of the result in the Scopus database
—