Gelfand-Tsetlin Bases of Orthogonal Polynomials in Hermitean Clifford Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104497" target="_blank" >RIV/00216208:11320/11:10104497 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mma.1514" target="_blank" >http://dx.doi.org/10.1002/mma.1514</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.1514" target="_blank" >10.1002/mma.1514</a>
Alternative languages
Result language
angličtina
Original language name
Gelfand-Tsetlin Bases of Orthogonal Polynomials in Hermitean Clifford Analysis
Original language description
An explicit algorithmic construction is given for orthogonal bases for spaces of homogeneous polynomials, in the context of Hermitean Clifford analysis, which is a higher dimensional function theory centered around the simultaneous null solutions of twoHermitean conjugate complex Dirac operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraic methods in geometry and topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
17
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
2167-2180
UT code for WoS article
—
EID of the result in the Scopus database
—