The dichotomy for conservative constraint satisfaction problems revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10105131" target="_blank" >RIV/00216208:11320/11:10105131 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/LICS.2011.25" target="_blank" >http://dx.doi.org/10.1109/LICS.2011.25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LICS.2011.25" target="_blank" >10.1109/LICS.2011.25</a>
Alternative languages
Result language
angličtina
Original language name
The dichotomy for conservative constraint satisfaction problems revisited
Original language description
A central open question in the study of non-uniform constraint satisfaction problems (CSPs) is the dichotomy conjecture of Feder and Vardi stating that the CSP over a fixed constraint language is either NP-complete, or tractable. One of the main achievements in this direction is a result of Bulatov (LICS''03) confirming the dichotomy conjecture for conservative CSPs, that is, CSPs over constraint languages containing all unary relations. Unfortunately, the proof is very long and complicated, and therefore hard to understand even for a specialist. This paper provides a short and transparent proof.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP201%2F09%2FP223" target="_blank" >GP201/09/P223: Constraint satisfaction problem and universal algebra</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science
ISBN
978-0-7695-4412-0
ISSN
1043-6871
e-ISSN
—
Number of pages
10
Pages from-to
301-310
Publisher name
IEEE COMPUTER SOC, 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
Place of publication
USA
Event location
Toronto, Kanada
Event date
Jun 21, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—