Vector potential formulation of a quasi-static EM induction problem: existence, uniqueness and stability of the weak solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10105852" target="_blank" >RIV/00216208:11320/11:10105852 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s13137-011-0019-9" target="_blank" >http://dx.doi.org/10.1007/s13137-011-0019-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13137-011-0019-9" target="_blank" >10.1007/s13137-011-0019-9</a>
Alternative languages
Result language
angličtina
Original language name
Vector potential formulation of a quasi-static EM induction problem: existence, uniqueness and stability of the weak solution
Original language description
We deal with the electromagnetic induction in a conductor with 3D distribution of electric conductivity in quasi-static approximation with the focus on theoretical aspects related to the solvability of this problem. We formulate the initial, boundary-value problem of electromagnetic induction in terms of a magnetic vector potential only, first in differential and then in integral forms.We prove that the problem is well posed in the Hadamard sense, that a solution exists, is unique and continuously dependent on data. The fact that no electric scalar potential is employed in the formulation and no gauge condition is imposed on the magnetic vector potential makes the formulation attractive for numerical implementations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GEM - International Journal on Geomathematics
ISSN
1869-2672
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
265-279
UT code for WoS article
—
EID of the result in the Scopus database
—