All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ASM-MOMA: Multiobjective Memetic Algorithm with Aggregate Surrogate Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10105975" target="_blank" >RIV/00216208:11320/11:10105975 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/11:00375286

  • Result on the web

    <a href="http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5949753" target="_blank" >http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5949753</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC.2011.5949753" target="_blank" >10.1109/CEC.2011.5949753</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ASM-MOMA: Multiobjective Memetic Algorithm with Aggregate Surrogate Model

  • Original language description

    Abstract-Evolutionary algorithms generally require a large number of objective function evaluations which can be costly in practice. These evaluations can be replaced by evaluations of a cheaper meta-model (surrogate model) of the objective functions. Inthis paper we present a novel distance based aggregate surrogate model for multiobjective optimization and describe a memetic multiobjective algorithm based on this model. Various variants of the models are tested and discussed and the algorithm is compared to standard multiobjective evolutionary algorithms. We show that our algorithm greatly reduces the number of required objective function evaluations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F11%2F1368" target="_blank" >GAP202/11/1368: Learning of functional relationships from high-dimensional data</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2011 IEEE Congress on Evolutionary Computation (CEC)

  • ISBN

    978-1-4244-7834-7

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1202-1208

  • Publisher name

    IEEE Computer Society

  • Place of publication

    New Orleans, USA

  • Event location

    New Orleans, USA

  • Event date

    Jun 5, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article