Hilbert's Third Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10106882" target="_blank" >RIV/00216208:11320/11:10106882 - isvavai.cz</a>
Result on the web
<a href="http://www.karlin.mff.cuni.cz/katedry/kdm/sborniky/sbornik-32.pdf" target="_blank" >http://www.karlin.mff.cuni.cz/katedry/kdm/sborniky/sbornik-32.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hilbert's Third Problem
Original language description
We are dealing with the mathematical and historical background of Hilbert's Third Problem. Max Dehn solved it immediately in the year 1900, when it was formulated. Roots of this problem can be found in Elements of Euclid XII,5, where we can find proof ofthe two same height tetrahedra relation using the method of exhaustion. The question of the exhaustion method necessity led to the Hilbert's Third Problem formulation: to specify two tetrahedra of equal bases and equal altitudes which can in no way be split up into congruent tetrahedra.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP401%2F10%2F0690" target="_blank" >GAP401/10/0690: Sources of the European Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
32. mezinárodní konference historie matematiky
ISBN
978-80-7378-172-9
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
189-192
Publisher name
Matfyzpress
Place of publication
Praha
Event location
Jevíčko
Event date
Aug 26, 2011
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—