A posteriori estimates and stopping criteria for iterative linearizations and linear solvers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10107093" target="_blank" >RIV/00216208:11320/11:10107093 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A posteriori estimates and stopping criteria for iterative linearizations and linear solvers
Original language description
We present the a posteriori error estimates which enable to take into account the linearization error in approximation of nonlinear problems and the algebraic error in the solution of linear systems associated to the given numerical discretization. Our estimates allow to distinguish, estimate separately, and compare these different error sources. Consequently, the iterative (Newton, quasi-Newton) linearization or iterative solution of linear algebraic systems can be stopped whenever the individual errors drop to the level at which they do not affect significantly the overall error. This can lead to important computational savings, as performing an excessive number of unnecessary linearization/linear solver iterations can be avoided. Moreover, due to their local efficiency, our estimators also allow to accurately predict the error spatial distribution and thus they are suitable for local adaptive mesh refinement. Finally, they give a fully computable upper bound on the overall error. Th
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Conference Presentation of Mathematics '10
ISBN
978-80-7372-724-6
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
109-116
Publisher name
TU Liberec
Place of publication
Liberec
Event location
Liberec
Event date
Oct 21, 2010
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—