Finite dualities and map-critical graphs on a fixed surface
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10104488" target="_blank" >RIV/00216208:11320/12:10104488 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jctb.2011.06.001" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2011.06.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2011.06.001" target="_blank" >10.1016/j.jctb.2011.06.001</a>
Alternative languages
Result language
angličtina
Original language name
Finite dualities and map-critical graphs on a fixed surface
Original language description
Let K be a class of graphs. A pair (F, U) is a finite duality in K if U is an element of K, F is a finite set of graphs, and for any graph G in L we have G {= U if and only if F not equal to or less than G for all F is an element of F where "{=" is the homomorphism order. We also say U is a dual graph in k. We prove that the class of planar graphs has no finite dualities except for two trivial cases. We also prove that the class of toroidal graphs has no 5-colorable dual graphs except for two trivial cases. In a sharp contrast, for a higher genus orientable surface S we show that Thomassen''s result (Thomassen, 1997 [17]) implies that the class, G(S), of all graphs embeddable in S has a number of finite dualities. Equivalently, our first result shows that for every planar core graph H except K(1) and K(4), there are infinitely many minimal planar obstructions for H-coloring (Hell and Nesetril, 1990 [4]), whereas our later result gives a converse of Thomassen''s theorem (Thomassen, 1997
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Volume of the periodical
102
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
131-152
UT code for WoS article
000297448800011
EID of the result in the Scopus database
—