C-alpha-regularity for a class of non-diagonal elliptic systems with p-growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124064" target="_blank" >RIV/00216208:11320/12:10124064 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00526-011-0417-8" target="_blank" >http://dx.doi.org/10.1007/s00526-011-0417-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-011-0417-8" target="_blank" >10.1007/s00526-011-0417-8</a>
Alternative languages
Result language
angličtina
Original language name
C-alpha-regularity for a class of non-diagonal elliptic systems with p-growth
Original language description
We consider weak solutions to nonlinear elliptic systems in a W(1,p)-setting which arise as Euler equations to certain variational problems. The solutions are assumed to be stationary in the sense that the differential of the variational integral vanishes with respect to variations of the dependent and independent variables. We impose new structure conditions on the coefficients which yield everywhere C-alpha-regularity and global C-alpha-estimates for the solutions. The proof uses a new weighted norm technique with singular weights in an L-p-setting.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06052" target="_blank" >LC06052: The Nečas Center for Mathematical Modeling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
22
Pages from-to
441-462
UT code for WoS article
000299124900006
EID of the result in the Scopus database
—