A Doubly Exponentially Crumbled Cake
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125601" target="_blank" >RIV/00216208:11320/12:10125601 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S1571065311001132" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1571065311001132</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2011.09.044" target="_blank" >10.1016/j.endm.2011.09.044</a>
Alternative languages
Result language
angličtina
Original language name
A Doubly Exponentially Crumbled Cake
Original language description
We consider the following cake cutting game: Alice chooses a set P of n points in the square (cake) image [0,1]^2, where (0,0) is in P; Bob cuts out n axis-parallel rectangles with disjoint interiors, each of them having a point of P as the lower left corner; Alice keeps the rest. It has been conjectured that Bob can always secure at least half of the cake. This remains unsettled, and it is not even known whether Bob can get any positive fraction independent of n. We prove that if Alice can force Bob?sshare to tend to zero, then she must use very many points; namely, to prevent Bob from gaining more than 1/r of the cake, she needs at least 2^{2^Omega(r)} points.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
2011
Issue of the periodical within the volume
38
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
265-271
UT code for WoS article
—
EID of the result in the Scopus database
—