Almost sure asymptotic behaviour of the r-neighbourhood surface area of Brownian paths
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126163" target="_blank" >RIV/00216208:11320/12:10126163 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10587-012-0017-6" target="_blank" >http://dx.doi.org/10.1007/s10587-012-0017-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-012-0017-6" target="_blank" >10.1007/s10587-012-0017-6</a>
Alternative languages
Result language
angličtina
Original language name
Almost sure asymptotic behaviour of the r-neighbourhood surface area of Brownian paths
Original language description
We show that whenever the q-dimensional Minkowski content of a subset A of a Euclidean space exists and is finite and positive, then the "S-content" defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in dimension greater or equal to 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GCP201%2F10%2FJ039" target="_blank" >GCP201/10/J039: Curvature measures and integral geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
67-75
UT code for WoS article
000301977200005
EID of the result in the Scopus database
—